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AI planning agents aregoal-directed: success is measured in terms of whether an input goal is satisfied. The
goal gives structure to the planning problem, and planning representations and algorithms have been designed to
exploit that structure. Strict goal satisfaction may be an unacceptably restrictive measure of good behavior, however.

A generaldecision-theoreticagent, on the other hand, has no explicit goals: success is measured in terms
of an arbitrary preference model or utility function defined over plan outcomes. Although it is a very general and
powerful model of problem solving, decision-theoretic choice lacks structure, which can make it difficult to develop
effective plan-generation algorithms.

This paper establishes a middle ground between the two models. We extend the traditional AI goal model in
several directions: allowing goals with temporal extent, expressing preferences over partial satisfaction of goals,
and balancing goal satisfaction against the cost of the resources consumed in service of the goals. In doing so we
provide a utility model for a goal-directed agent.

An important quality of the proposed model is its tractability. We claim that our model, like classical goal
models, makes problem structure explicit. This structure can then be exploited by a problem-solving algorithm. We
support this claim by reporting on two implemented planning systems that adopt and exploit our model.
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1. INTRODUCTION

Reasoning about and planning for an uncertain world raises both representational and
algorithmic problems. We need to represent change, uncertainty, and value or utility in order
to represent alternative plans of action. We further need an efficient way to generate plausible
plans, anticipate their results, improve their performance, and choose the best option.

Classical AI planning algorithms provide a vocabulary and computational model for
describing and solving planning problems. The definition of a planning problem includes:

1. a description of some initialworld state(usually expressed as a formula in some logical
or quasi-logical language)

2. agoal state description(another formula that describes a subset of the world states, one
of which should hold at the end of plan execution)

3. a set ofoperators(that can effect change in the world state).

Classical planning algorithms also typically assume an omniscient agent: the initial world
state is known with certainty, the operators’ state changes are deterministic, and the world
does not change except as a result of operator execution. As a result, the agent always has
complete information about the world state while it is planning and executing.

We are particularly interested in the second component of this problem definition. The
goal state description defines a set of world states that should hold when plan execution
completes. Any plan that moves the world into one of these states is equally good. We will
refer to this definition of the planning problem as the “simple goal satisfaction” model.1
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1A vast majority of planning algorithms almost unanimously define the problem in terms of simple goal satisfaction. To
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Simple goal satisfaction is an attractive way to define the planning problem. In addition
to being concise, the model derives power from a goal formula that makes the target world
stateexplicit to the planning algorithm. The goal formula can be matched against opera-
tor postconditions, for example, to determine what operators should be added to the plan.
This technique is fundamental to a diverse collection of planning algorithms, including goal
regression, means-ends analysis, and backward- and forward-chaining planners.

But simple goal satisfaction has these limitations as a model:

• It defines success in terms of what holds only at theendof plan execution.
• Goals are regarded as all-or-nothing propositions, so failure to achieve the goal completely

is equivalent to complete failure.
• It regards as equivalent any two plans that achieve the goal, without regard to how

efficiently they do so.

Furthermore, while simple goal satisfaction may be a good model for agents required to
achieve their goals aggressively and at all costs, it prevents us from representing situations
like the following:

• Achieve the goal by noon; being slightly late is acceptable but not ideal.
• Bring me these three books from the library; if one is checked out, bring the other two

anyway.
• Run these errands, but be careful to conserve fuel because it is very expensive.

None of these situations is inherently excluded from the classical planning paradigm, but few
implemented algorithms can handle them.

What are the alternatives if the simple goal satisfaction model is inadequate for a particular
problem domain? The decision-theoretic model of problem solving (e.g., Raiffa 1968) defines
success in terms ofpreferencesover theoutcomesof executing a plan. This model permits the
expression of preferences between any two outcomes instead of a binary satisfied/not satisfied
criterion applied to the world state prevailing at the end of execution. The focus on complete
outcomes (rather than on the end of execution only) permits the expression of preferences
about any aspect of a plan’s execution: how long it takes, its resource consumption, and
so on. The planning problem is then to generate the plan that leads to themost preferred
outcome. In the case of uncertainty—in which a plan generates a probability distribution
over outcomes—the problem is to generate the plan with maximumexpected value. This
definition demands anoptimalplan instead ofanyplan that successfully achieves the goal.

This general model of plan success is more than adequate to capture the situations listed
above. Its problem is its generality, however. First, instead of goal formulas we must represent
complete plan outcomes (all execution traces). Second, instead of implicitly defining two
equivalence classes over plan outcomes (those that satisfy the goal and those that do not), we
must express arbitrary pairwise preferences.

Furthermore, there is no inherent structure in this representation. Therefore, it is not
clear how an algorithm like backward chaining would work. At the most extreme—when the
preference model is a black-box relation that only answers whether outcomeo1 is preferable
to o2—the planner is forced to employ a generate-and-test algorithm: propose two plans,

get a sense of how researchers define planning problems, we surveyed the proceedings of the 1992, 1994, and 1996 AI Planning
Systems conferences. We identified 67 papers that reported actual planning algorithms (as opposed to those that dealt with
formal aspects of plan generation) and defined the problem clearly enough for us to determine the definition of plan success. Of
these, 55 adopted the simple goal satisfaction model. Of the remaining 12 papers, 8 adopted the extended goal model proposed
in this paper.
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generate every possible outcome for each, pass these outcomes to the preference evaluator,
discard the less preferred plan, and repeat. There is no guidance regarding how to repair or
improve a plan, which is precisely the information supplied in the simple goal model by the
goal formula and plan operators. More specifically, there is no way to evaluate how good a
plan is until that plan is fully constructed and all its possible outcomes are generated. The
ability to evaluate how close a candidate plan is to a solution, during its construction, is a
central component of classical planning algorithms.

In this paper we seek a middle ground between the simple goal model and the arbitrary
preference model. We extend the notion of a goal into a preference or utility model that
includes concepts like temporal extent, partial satisfaction, and efficiency in achievement.
At the same time, we retain the explicit structural information in the goal formula. Thus,
planning algorithms can still use the preference model to guide the search for optimal plans
by evaluating partially constructed ones.

We will use the language of decision theory to develop our model. This provides a rational
basis for extending the planning problem into probabilistic domains.

The paper is structured as follows. Section 2 discusses the role of goals in the plan-
generation process, and proposes and justifies a utility function for a goal-directed agent.
This function is expressed in terms of individual utility functions for each of the agent’s goals
and for resource attributes. Section 3 introduces concepts and notation from multiattribute
utility theory required to develop the model formally. Section 4 then develops a formal utility
model for goal-directed agents.

The paper then addresses computational questions: How can a planning agent exploit
this utility model in the process of generating plans? Section 6 reports on one formal and
two algorithmic techniques for generating plans, each of which exploits explicit structural
aspects of the utility model.

Three sections conclude the paper: Section 7 summarizes the model and addresses val-
idation issues, Section 8 discusses related work, and Section 9 suggests areas for future
research.

2. CLASSICAL GOAL-DIRECTED AGENTS

Before formally analyzing goals and utilities, we must define more precisely what role
these concepts play in a planning system. We also examine the limitations of behavior that
is strictly goal directed, and explore extensions to the simple goal model.

2.1. The Role of Goals in Automated Planning Systems

Goals typically play three roles in automated planning systems. They

1. communicate information about the planning problem. In particular, goals provide a
concise definition of what constitutes a successful plan.

2. limit inference in the planning process by allowing the planner to examine and build
chains of dependencies over goal formulas. Thus, goals define exactly what isrelevant
to the planning problem.

3. restrict the temporal scope of the planning problem, imposing a temporal “horizon”
beyond which planning is irrelevant.

In the first case goals can be communicated more easily than utility functions, in cases two
and three the goals’ symbolic content can aid in the search for good plans. Thus, there is a
fundamental link between the goal model and an appropriate solution algorithm.
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2.2. Limitations of Goal-Directed Behavior

Suppose a problem solver is given only a symbolic goal expression, a goal formulaG
representing the target world state(s). Assume the problem solver then builds a plan that
maximizes the probability that the world will be in a state in whichG holds when plan
execution ends. This is the probabilistic analogue of logical goal-directed planning, in which
the problem solver constructs a plan thatprovablyachievesG. What limits does this model
place on the problem solver’s preference structure? In other words, under what circumstances
is planning to maximize expected utility equivalent to planning to maximize the probability
of goal satisfaction?

A plancan be viewed as defining a probability distribution overchronicles. A chronicle
is a complete specification of the world state over time, representing one possible way plan
execution might play out. We can therefore define the probability that a planP generates
a chroniclec as: P(c|P).2 We are interested in the time point representing the moment the
plan finishes executing; we use end(c) to represent this point. The probability of success in
the classical paradigm is the probability that the goal conjunction will hold when the plan
finishes executing:

P(P succeeds) ≡ P(G|P) ≡
∑

{c: G holds at end(c)}
P(c|P). (1)

The planner tries to find the plan that maximizes this value.
A decision-theoretic planner has the same probabilistic model as the probabilistic planner.

However, it also uses a utility function over chronicles, a functionU(c) that maps chronicles
into real values. The expected utility of a plan is defined as:

EU(P) ≡
∑

c
U(c) · P(c|P). (2)

The decision-theoretic planner tries to find the plan that maximizes this value.
To understand the relationship between these two models, we can ask under what circum-

stances the two models are equivalent; that is, for what utility models (definitions ofU(c)) is
the plan that maximizes the probability of goal achievement (Eq. (1)) the same as the plan
that maximizes expected utility (Eq. (2))?

The answer is that this relationship holds only for simple, two-valued utility functions—
functions for which utility is a constant low valueUG for chronicles in which the goal does
not hold at the end of plan execution, and a constant high valueUG for chronicles in which
it does. Figure 1 shows such a function; utility is represented along the vertical axis, and the
space of chronicles along the horizontal axis.G andG designate the set of all chronicles in
which the goal holds and does not hold, respectively.

Previous work (Haddawy & Hanks 1990) demonstrates the correspondence between these
two policies, showing that the simple class of step functions pictured in Figure 1 is theonly
class of utility functions for which the relationship

P(G|P1) > P(G|P2)⇒ EU(P1) > EU(P2) (3)

holds for any plansP1 andP2. In other words, describing the desired state of the world in
terms of a goal formula restricts a problem-solver’s preference structures to those preferences
that can be characterized by a simple step function. Haddawy and Hanks (1990) also explored

2McDermott (1982) defines chronicles using a temporal logic, and Hanks (1990b) and Haddawy (1991) extend the notion
to a probabilistic framework.
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FIGURE 1. Utility function for simple goal satisfaction.

the relationship between goal satisfaction and probability maximization for other situations,
such as cases in which goal expressions are combined with preference information about
resource consumption.

This analysis illustrated some limitations of planning to achieve a goal conjunction, which
we will address later in this paper. The model can be extended in other directions as well:

1. Temporal extent. Defining plan success in terms of what is true at the end of execution
(i.e., defining a successful chronicle only in terms of whether the goal holds at end(c))
rules out goals such as: deadlines (haveG1 true by noon andG2 true by midnight),
maintenance (keepG true continuously between noon and midnight), and prevention
(makeG1 true, but without allowingG2 to become true in the meantime). The last is a
combination of deadline and maintenance goals.Whatis accomplished is important, but
so iswhenor for how long.

2. Trade-offs among the goals. The classical model dictates that the satisfaction of all goal
conjuncts is necessary and sufficient for success. A reasonable extension to this model
is the view that satisfyingsomeconjuncts is preferable to satisfyingnone. Thus, success
in achieving one conjunct could be traded off against success in achieving others. In this
case each goal is still an all-or-nothing proposition; however, satisfying some subset of
the goals might be preferable to satisfying none.

3. Partial satisfaction. Symbolic goals imply a binary success criterion: either the goal
formula holds at the end of execution or it does not. This criterion is reflected in the
step function: utility is either at a constant high value or at a constant low value. A
realistic representation should make it possible to (1) define what it means to satisfy a
goal partially, and (2) specify that satisfyingG entirely is most preferred, but satisfying
G partially is better than not satisfying it at all. To reason about partial satisfaction, it is
also useful to introduce metric quantities into the model. For example, we could express
the fact that delivering three tons of rocks to the depot is preferable to delivering two, but
that delivering less than two tons is useless.

4. Incidental costs and benefits. Symbolic goals imply that goal attributes are the only
aspects of a chronicle that are relevant to assessing utility. This rules out the possibility
that planP1 is preferable toP2 because it is as likely to achieve the goal asP2, but at
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a lower cost. Symbolic goals provide no way to specify the “lower cost” aspect, nor do
they provide the language to express the trade-off between effectiveness in achieving the
goal and the cost involved in doing so.

This list is not exhaustive, and the items are not mutually exclusive: minimizing con-
sumption of a resource can be viewed as having the goal of consuming none of it, but allowing
partial satisfaction of that goal. Our analysis is intended to demonstrate some useful exten-
sions to the simple goal model, and hence the target of our incremental extensions to that
model:

• The language of goals should be extended to represent temporally scoped goals, partial
goal satisfaction, and resource-related utility.

• To use these extended goal forms effectively in planning scenarios, we must establish
relationships like that shown in Eq. (3): circumstances under which planning to maximize
the probability of goal satisfaction guarantees rational behavior in the decision-theoretic
sense.

• We need to exploit these relationships as we build or refine plans.

We next present a utility model that extends the simple goal model’s expressive power,
but retains an explicit representation of the goals. Since the model uses concepts from multi-
attribute utility theory, we begin with a short review of the relevant concepts and terminology.

3. MULTIATTRIBUTE UTILITY THEORY

Our development of utility functions makes extensive use of several concepts related to
independence properties of multiattribute utility functions, so we begin by providing defini-
tions taken from Keeney and Raiffa (1976). We then present a simple example to clarify the
concepts presented.

3.1. Concepts and Terminology

Independence properties enable the concise specification of a utility function over a set
of attributes in terms of simpler functions over subsets of those attributes. The user is also
referred to von Neumann and Morganstern (1947) and Raiffa (1968) for more information
on the basic concepts and notation of decision theory.

We begin by formalizing the concept of anoutcome. In decision theory an outcome
is defined as a description of the consequences of a course of action, specifying the state of
everything that is of value to the decision maker. This is equivalent to the notion of achronicle
introduced in the previous section. We will use the terms interchangeably, preferring the term
chroniclewhen discussing concepts from the planning literature and the termoutcomewhen
discussing concepts from utility theory.

Outcomes are typically specified in terms of value assignments to a set ofattributes. We
use capital letters to designate attributes. Thebasic attributesin most of our discussions is
the setA = {A1, A2, . . . , An}, where eachAi assumes a single value from itsdomain—a
totally ordered, possibly infinite set. Attributes correspond roughly to the predicate symbols
used to model a planning domain, but the correspondence must account for the temporal
dimension as well. Therefore, the correspondence is actually between an attributeAi and a
propositional symbol evaluated at a particular point in time.

It is generally the case that attributes can be partitioned intosetsthat share preference
characteristics. For example, two attributesAi and Aj might be related because they refer
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to two related propositional attributes evaluated at the same time, or because they refer to
the same propositional attribute evaluated at different times. A set of attributes can also be
considered an attribute. IfB is a nonempty subset of the full attribute setA, we will refer to
B as “attributeB.” The complement ofB, A − B, is denoted byB.

An outcomeis an assignment of values to each attribute from the appropriate domain:
a = {a1,a2, . . . ,an}. When referring to the portion of an outcome that applies to a subsetB
of A, we use the notation(b,b) to indicate the partition of the outcome into two subsets.

A preference orderº is a total ordering on the set of all outcomes. We say that outcome
a1 is weakly preferred tooutcomea2 if a1 º a2. Given such an order, we can define notions
of strict preference and indifference. For example, we say thata1 is strictly preferred to
a2 if a1 º a2 and it is not the case thata2 º a1. A central result from decision theory
states that if preferences satisfy certain axioms of “rationality,” then there exists a real-
valuedvalue function v on the space of all outcomes, such thata1 º a2 if and only if
v(a1) ≥ v(a2).

In situations where uncertainty is involved, a preference model must capture not only the
decision maker’s attitude toward different outcomes, but also his attitude toward uncertainty
or risk. For example, one might prefer a plan that usually offers adequate performance to one
that usually offers exceptional performance if the latter leads to a catastrophe when it fails.
Attitudes toward uncertain outcomes are generally assessed by eliciting preference informa-
tion aboutlotteriesover outcomes. Atwo-outcome lotteryis an〈a1, p, a2〉-tuple wherea1
anda2 are outcomes, andp is a probability. The lottery describes a hypothetical situation in
which outcomea1 occurs with probabilityp, and outcomea2 occurs with probability(1− p).
Lotteries with more than two outcomes are defined similarly. When preferences over lotteries
are rational, they can be captured by a real-valuedutility function u, defined on the space of
outcomes, such thata1 º a2 if and only if u(a1) ≥ u(a2). Thus, a value function is a special
case of the utility function in cases where there is no uncertainty about the outcome of taking
action.

Defining a complete preference model for a planning agent therefore requires eliciting
preferences over all lotteries over all possible outcomes, which is a daunting task. For this
reason we look for regularities in the preferences that allow the model to be defined in terms
of preferences over its components. For example, preferences over fuel consumption (a set of
attributes) might be the same regardless of the time at which the fuel is consumed (a different
set of attributes). Likewise, preferences over whether a goal is satisfied might not depend on
how much fuel was consumed in achieving the goal; in this case, preferences over these two
attributes could be elicited separately.

The key to discovering and exploiting these relationships is to findindependence rela-
tionshipsamong attributes. The following definitions clarify the concept of independence.

Definition 1 (Preferential Independence). An attributeB (B ⊂ A) is preferentially indepen-
dent (PI) of its complementB if the preference order over outcomes involving only changes
in the level inB does not depend on the levels at which attributes inB are held fixed.

Utility independence extends the concept of preferential independence to situations where
the consequences of an action are uncertain:

Definition 2 (Utility Independence). An attributeB (B ⊂ A) is utility independent (UI) of its
complementB if the preference order over lotteries involving only changes in the level ofB
does not depend on the levels at which attributes inB are held fixed.
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Since outcomes are simply degenerate lotteries (lotteries where the probability is 1.0),
PI immediately follows from UI. The converse is not true, however, as UI is the stronger
condition.

For the remainder of this paper we focus on the concept of utility independence. Instead
of saying thatB is UI of its complementB, we simply say thatB is UI. If there are only two
basic attributes,A = {A1, A2}, we refer to them as being PI or UI of one another without
reference to a setB.

Utility independence is not symmetric in the same way as is probabilistic independence.
It is possible for an attributeB to be UI, but not vice versa, i.e.,B is not UI. WhenB is UI
for all B ⊂ A, we say that the attributes ofA aremutually utility independent(MUI).

The significance of utility independence is that the structure in the preferences over
independent attributes leads to “simpler” forms of the utility function over these attributes.
Simpler means that a high-dimensional utility function can be reduced to a function of other
functions with lower dimensionality, resulting in fewer values to elicit. For example, ifB
is UI of C = B, the utility function can be completely specified by two conditional utility
functions forC and one conditional utility function forB:

u(b, c) = u(b0, c)+ u(b, c0)[u(b1, c)− u(b0, c)]. (4)

If B andC are mutually utility independent—that is, ifC is also UI—then the utility function
takes an even simpler form:

u(b, c) = kBuB(b, c
′)+ kCuC(b

′, c)+ kBCuB(b, c
′)uC(b

′, c), (5)

whereb′ andc′ are arbitrarily chosen specific values ofB andC. The joint utility function
can thus be built by eliciting only the two simpler conditional utility functions,uB anduC,
and three scaling constants.

It is natural to ask when the multiplicative term drops out of Eq. (5); that is, what additional
assumptions guarantee thatkBC = 0? This case is calledadditive independence(AI), because
the utility function is the sum of the utility functions for its component attributes.

Definition 1 (Additive Independence). The attributes of the setA = {A1, A2, . . . , An} are
called additive independent (AI) if the utility functionu(a) can be expressed in the form:

u(a) =
n∑

i=1

ki uAi (ai ).

An alternative definition for additive independence is to say that the preferences over lot-
teries on the attributesA1, A2, . . . , An depend only on their marginal probability distributions,
not on their joint probability distribution (Keeney and Raiffa 1976, Th. 6.4).3

It is clear that additive independence implies mutual utility independence, but the converse
is again not true. Refer to Keeney and Raiffa (1976) and the example that follows for a
discussion of the conditions that imply additive-independent preferences.

3.2. Example of Preferential, Utility, and Additive Independence

A simple example will help to clarify the concepts of preferential independence, utility
independence, and additive independence. Consider having to make decisions that affect two

3Note that theki coefficients are not formally necessary, since theuAi can themselves be scaled arbitrarily. They are
usually introduced only to illustrate the fact that theuAi functions have to be scaled with respect to each other.
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attributes,W (wealth) andF (fame). The former can take valuesrich andpoor, and the latter
can take valuesinfamous, anonymous, andfamous.

In the case of certainty, the effect of every action onW and F is deterministic. All
that is necessary is a preference ordering over (w, f) pairs. Saying thatW is preferentially
independent ofF amounts to saying that the preference order over the values ofW does not
depend on the value ofF. For example suppose that(rich, f ) Â (poor, f ) for all values of
f . Likewise, it is possible that our fame-seeking decision maker has preferences of the form
(w, famous) Â (w,anonymous) Â (w, infamous), which hold for all values ofw. We can
then say thatF andW are mutually preferentially independent, and as a result the decision
maker’s value function is of the form

v(w, f ) = kWv(w)+ kFv( f ).

For decisions whose outcomes are uncertain, the assessment is over lotteries of the form
〈(wi , fi ), p, (wj , f j )〉. However, the definition of utility independence is essentially the
same:W is utility independent ofF if the decision maker’s preferences over lotteries of the
form

〈(wi , f ), p1, (wj , f )〉 Â 〈(wi , f ), p2, (wj , f )〉
are identical regardless of the value off . That is, the decision maker’s base preferences over
W do not depend onF; in addition, his attitude towardrisky actions involvingW does not
depend on the value ofF, either.

Notice that MUI does not cover the case where a decision can affect both attributes
simultaneously. For example, consider the case where the decision maker is currentlypoor
and anonymous and has two actions that could change both. In order forW and F to
be additive independent, the preferences toward changes inW are insensitive to symmetric
changes inF. For example, the following relationship is sufficient to guarantee thatW andF
are additive independent

〈(poor, famous), 0.5, (rich,anonymous)〉 ∼ 〈(poor,anonymous), 0.5, (rich, famous)〉
provided that all three of the following conditions are met:

1. W andF are also MUI
2. (poor, famous) 6∼ (poor,anonymous)
3. (poor, famous) 6∼ (rich, famous).

This concludes our brief introduction to multiattribute utility theory concepts and ter-
minology. We next structure our agent’s utility model according to these independence
assumptions.

4. UTILITY MODELS FOR GOAL-DIRECTED AGENTS

This section develops a utility model for a goal-directed agent by describing the form of
the functionU(c) introduced in Section 2. The task is simple for the classical goal model in
the previous section

U(c) =
{

1 if G is true at end(c)
0 otherwise (6)

where we can view a chronicle as a set of attributes capturing the state of the system at all
points in time. Thus, “G at end(c)” is a single attribute.
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However, we want our model to capture these facts as well: that goal satisfaction can
be measured at other time points and over intervals, that goals can be partially satisfied, that
(partial) satisfaction of one goal can be traded off against (partial) satisfaction of other goals,
and that resource costs also affect the extent to which a plan succeeds. There are thus two
main properties we want to capture to make our model more robust:

1. Satisfying a goal to a greater extent is preferable to satisfying it to a lesser extent, all
other things being equal.4

2. Success in satisfying one goal component can be traded off against success in satisfying
another goal, or against consuming resources.

It is also important that symbolic information about the goal be explicit in the model so that
information can be exploited by planning algorithms.

In Section 4.1 we develop a definition for the agent’s top-level utility function in terms
of its goals and preferences about resource consumption. Section 4.2 then discusses how the
model handles goal interactions, a common topic in classical planning research.

4.1. The Agent’s Utility Model

We begin by specifying the top-level functional form for the agent. We assume that the
top-level utility function is composed of (1)n individual utility functionsUGi associated
with the agent’sn explicit goals, and (2) a utility functionUR (for “residual” or “resource”
attributes) that measures the extent to which the outcome produces or consumes nongoal
attributes, e.g., time, fuel, wear and tear on equipment, money lost or gained.

We further assume that then top-level goals and the resource attributes are mutually utility
independent. The separation of residual utility from goal utility and the MUI assumption
provides strong computational leverage; it allows dominance among plans to be shown by
demonstrating dominance along each of the individual goal and resource dimensions. For
example, thePYRRHUS planner discussed in Section 6.2 calculates upper bounds on the
expected utility of a plan by calculating upper bounds on the expected utility for eachUGi
and for UR. Similarly, the qualitative filtering technique discussed in Section 6.3.2 can
be used to establish stochastic dominance relationships among plans by establishing those
relationships among the individual goal and residual utility functions.

Under these assumptions, the top-level utility function has the following multiplicative
form.5 For simplicity of notation in the equation below, we defineUGn+1 = UR.

U(c) =
n+1∑
i=1

ki UGi (c)+ k
n+1∑

i=1, j>i

ki kj UGi (c)UGj (c) (7)

+ k2
n+1∑

i=1, j>i,l> j

ki kj kl UGi (c)UGj (c)UGl (c)

+ · · ·
+ knk1k2 . . . kn+1UG1(c)UG2(c) . . .UGn+1(c),

4See Wellman and Doyle (1991) for a more general interpretation of this criterion.
5See Keeney and Raiffa (1976, Ch. 6) for details of this and later derivations.
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wherek is a scaling constant that is the solution to:

1+ k =
n+1∏
i=1

(1+ kki ).

Equation (7) reduces to the following additive form when
∑n+1

i=1 ki = 1, k = 0:

U(c) = 6n+1
i=1 ki UGi (c), (8)

which can be rewritten as:

U(c) = 6n
i=1ki UGi (c)+ krUR(c). (9)

When
∑n+1

i=1 ki 6= 1, Eq. (7) can be rewritten as:

kU(c)+ 1= (kkr UR(c)+ 1)
n∏

i=1

(kki UGi (c)+ 1). (10)

Verifying that top-level goals and the resource attributes are MUI seems daunting, since
it would require us to test utility independence for all subsets of the goals and resources.
Fortunately, there are various simpler conditions that imply MUI. For example, Keeney
and Raiffa (1976, Th. 6.2) show that for a set of attributes{Xi }, if {Xi , Xi+1} is UI for
i = 1,2, . . . , n − 1, n ≥ 3, then theXi are MUI. For many problems, even this simplified
condition would be impossible to verify; therefore, in practice MUI is typically determined
by asking the decision maker for preferences at a few points, which are then verified by asking
general questions about the independence of preferences over the attributes. Thus, for any
planning situation, the validity of the MUI assumption (1) is subject to verification for the
particular problem, and (2) will depend on the choice of goals and attributes used to model
the problem. We return to this second point below.

Note that at the top level, the model explicitly represents trade-offs between satisfying
individual goals as well as the trade-off between goal satisfaction and resource consumption.
For the additive form, for example, this dependency is defined in terms of then+ 1 numeric
parametersk1, k2, . . . , kn, kr , only n of which are formally necessary. The ratio of any two
of these numbers indicates the amount the agent is willing to sacrifice in satisfaction of one
goal in order to satisfy another, or the amount of satisfaction in resource consumption the
agent is willing to “spend” in order to increase the extent to which a goal is satisfied.

4.2. Goal Interactions

The MUI restriction on top-level goals seems troubling on the surface. This is because
AI planning research has focused mainly on interactions among multiple goals, and our
assumption seems to rule out these interactions. In particular, the MUI assumption seems to
run counter to the analysis of conjunctive-goal planning presented in Section 2. Equation (7)
means, for example, that we cannot represent conjunctive goals such as “have the truck fueled
and loaded by 7 a.m.” as two separate top-level goals because satisfying either one without
the other presumably affords low utility but their conjunction affords high utility. This is
indeed the case, and the solution is to represent these two conjuncts not as two goals, but as
two interacting components of asinglegoal. In Section 5.2 we provide a model that allows
interactions among symbolic components that can interact to comprise a goal. We demonstrate
how to represent traditional conjunctive goals of this form: “top-level conjunctive goalG is
satisfied if and only if its componentsg1 . . . gn are all fully satisfied.”
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We should also note that the assumption of utility independence does not imply that goals
areprobabilistically independent. One might object that two goals—“have the truck at the
depot by noon” and “have the truck clean”—interact strongly if the only road to the depot
is muddy, and there is no way to wash the truck once it arrives at the depot. In particular,
there might be no plan that would make them both true. But this situation means only that
the two goals are notprobabilisticallyindependent; it does not constitute a violation ofutility
independence. The MUI assumption demands only that theutility derived from satisfying
one top-level goal does not depend on the extent to which the other goals are achieved. It does
not address the likelihood of achieving either goal in isolation, or both simultaneously. The
likelihood of achieving goals is properly reflected in the probabilistic model of the domain
and the operators. It is not a reflection of the decision maker’s fundamental preferences.

The main implication of mutual utility independence is that the decision maker must
structure his preferences, identifying those that are utility independent and those that are not.
The former are divided into separate goals. The latter become components of individual
goals, which are allowed to interact.

We now turn to the question of how to express the goal information—theUGi (c). We
temporarily ignore the top-level utility functionU(c) and the residual utility functionUR(c),
to concentrate on how to build utility functions for individual goals.

5. UTILITY FUNCTIONS FOR INDIVIDUAL GOALS

In classical planning algorithms, goals consist of a symbolic expression to be achieved.
Our paper extends this idea in several directions, including giving goals a temporal extent
and allowing them to be partially satisfiable. Partial satisfaction should be allowed for both
numeric goals (“deliver 10 tons of cargo”) and for more traditional symbolic goals (“have all
the parts painted and on the loading dock by noon”). Partial satisfaction should extend to the
temporal component as well: if the deadline is noon, finishing by 12:05 might be better than
finishing the next morning.

We begin by breaking a goal intostaticandtemporalcomponents. The former indicates
what is to be achieved, the latterwhenit is to be achieved. The goal “deliver two tons of
material to the depot by noon” has (1) a static component, described by the variable “number
of tons delivered to the depot,” and (2) a temporal component representing the deadline of
noon and information about preferences for deliveries that occur after the noon deadline.

We define two types of temporal goals:deadline goalsand maintenance goals.6 A
deadline goal says that some condition should be true by a deadline point. Two examples of
deadline goals are:

• Have block A on block B and block B on block C by noon.
• Have two tons of rocks at the depot by 2:00 this afternoon.

A maintenance goal represents a desire to keep a condition true over an interval of time. Two
examples of maintenance goals are:

• Keep the temperature between 65 and 75 degrees from 9 a.m. until 5 p.m.
• Keep all tools in the warehouse between midnight and 8 a.m.

6These particular extended goal forms—temporal deadline points and maintenance intervals—are not uncommon in the
literature (see, e.g., McDermott (1982), Drummond (1989), Allen et al. (1991)), though this work does not address the problem
of reasoning about uncertainty or partial satisfaction.
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The remainder of this section describes possible ways to formalize deadline and mainte-
nance goals in terms of temporal and static components and discusses the problem of eliciting
utility functions for these goals. We show that under certain utility independence assump-
tions, the temporal/static separation can be preserved so we can express preferences over
partial satisfaction of both components. In particular, we show how to specify theUGi func-
tion for a deadline goal in terms of one utility function for the static component and a set of
temporal weighting coefficients. We also demonstrate how to specify theUGi function for
a maintenance goal in terms of one utility function over pairs consisting of a value for the
static component and the length of the maintenance interval.

5.1. Deadline Goals

We now develop our utility modelUGi (c) for deadline goals. Let{Ai } denote the set
of variables representing the static goal component, so thatAi represents the value of the
static goal component at timei . The Ai are attributes as defined in Section 4, but they are
constrainted to share the same domain (e.g., “number of tons delivered to the depot”). Thus,
for the utility functionUG(c), we have a set of basic attributesA1, A2, . . . tracking the state
of the static component over time.

Let the deadline point bed, the earliest time at which satisfying the static component
is of value.7 We also assume that the deadline has ahorizon h(0 < d ≤ h), a time after
which there isno benefit in achieving the static goal component. In other words, temporal
attributesA0, A1, . . . , Ad−1 and Ah+1, Ah+2, . . . have no effect on the utility functionUG.
Theoretically, this is a restrictive assumption, omitting cases such as those in which the
effects on utility of temporal attributesAt asymptotically approach 0 whent →∞. For most
practical problems, however, it is possible to identifysometime point after which satisfying
the goal does not matter. Thus, for purposes of this discussion, a chroniclec is simply the
sequencec = (ad, . . . ,ah).

The task of specifying the utility functionUG(c) is equivalent to specifying the preference
order over lotteries with|Ai |h+1 possible outcomes (where|Ai | denotes the cardinality of
the domain ofAi ). Since this is not practical, we must seek techniques to decompose the
problem. We assume mutual utility independence in order to decomposeUG into simpler
components, as we did with the top-level utility function. Mutual utility independence gives
rise to a multiplicative form similar to that of Eq. (7). For simplicity of exposition, we
make the stronger assumption of additive independence; we note, however, that all results
concerning exploitation of the utility function’s structure to facilitate computation apply to
the case of mutual utility independence, as well.

The rest of this section proceeds as follows. First, we describe a simple model for
eliciting the utility function when additive independence and some structural assumptions
apply. Next, we discuss situations in which the structural assumptions of our model are
violated. We then discuss a situation whereAI is not directly applicable, but can still be
achieved by transforming the static attribute. An extended example of assessing a utility
function follows, and the section finishes with a discussion of goals with symbolic attributes
and a discussion of maintenance goals.

5.1.1. When AI is Directly Applicable.First, consider the case whenAI can reasonably
be assumed. In this case, the utility functionUG for the deadline goal can be expressed in

7Note that this does not coincide with the the conventional use of the term “deadline” but is chosen for technical reasons.
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the following additive form:8

UG(c) =
h∑

i=d

ki ui (ai ). (11)

In this equation, the deadline utility functionUG, the coefficientski , and the utility
functionsui satisfy the following structural assumptions. We assume that the common set
of values of theAi is bounded and totally ordered. We usea−i anda+i to denote the least
and most preferred values forAi , respectively. Due to theAI assumption, the notions of
least and most preferred values are well defined because preferences over values of anyAi
are independent of the values of the otherAj . For all i , the utility functionui (ai ) is the
conditional utility function obtained fromUG by holding all temporal attributes other than
Ai at their least preferred values. BothUG andui are scaled from 0 to 1 by setting:

UG((a−0 , . . . ,a
−
h )) = 0

UG((a+0 , . . . ,a
+
h )) = 1

ui (a
−
i ) = 0

ui (a
+
i ) = 1.

The coefficientski , which must sum to 1, are expressed as:
ki = UG((a−d , . . . ,a

−
i−1,a

+
i ,a

−
i+1, . . . ,a

−
h )).

They can be determined from the probabilityki for which the decision maker is
indifferent between the lottery〈(a+d , . . . ,a+h ), ki , (a

−
d , . . . ,a

−
h )〉 and the certain outcome

(a−d , . . . ,a
−
i−1,a

+
i ,a

−
i+1, . . . ,a

−
h ). Since theki sum to one andui (a

+
i ) = 1, we have

UG(a+1 ,a
+
2 , . . . ,a

+
n ) = 1.

We can further simplify the utility function by assuming that preferences over values of
the attributesAi are stable over time. Equation (11) can then be simplified by substitutingu
for ui :

UG(c) =
h∑

i=0

ki u(ai ). (12)

The conditional utility functionu(ai ) can be assessed at any convenient time point (for
example, at the deadline).

A common type of goal that fits this model maximizes some quantity over time. For
example, consider the problem of delivering tomatoes to a warehouse. Suppose our goal is to
deliver as many tomatoes as possible, with the constraint that our maximum delivery capacity
is 10 tons per hour (in other words,a−i = 0, a+i = 10). Suppose our deadline (the earliest
point at which delivering tomatoes is of value) is 8 a.m., and we are indifferent as to when
deliveries occur between 8 a.m. and noon. As a result, the coefficientski for these time points
must be equal. Suppose further that during the afternoon, deliveries have linearly decreasing
utility until midnight, which is the horizon point after which all utilities are 0; we then set
d = 0 andh = 24− 8= 16.

Finally, assume that we are indifferent between delivering some constant amount at every
time point between 8 a.m. and noon and delivering that amount at every time point after noon.
In this case the sum of theki for the time points 0 to 4 must equal the sum for the time points
5 to 16. The coefficientski representing these preferences are:

ki =
{ 1

10 if 0 ≤ i ≤ 4
17−i
156 if 5 ≤ i ≤ 16.

(13)

8See Keeney and Raiffa (1976, Ch. 6) for details of this derivation.
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The denominator 156 comes from the constraint that
∑16

i=5 = 1/2.

5.1.2. Violation of the Structural Assumptions.In the preceding discussion, we as-
sessed thecoefficientski bysettingup lotterieswithoutcomes(a−d , . . . ,a

−
h )and(a+d , . . . ,a

+
h ).

But one or both of these hypothetical outcomes might not be physically possible. Asking a
decision maker to entertain a lottery with impossible outcomes may produce an inaccurate
assessment. Two possible solutions are to assess the function directly or to choose different
outcomes as reference outcomes. We discuss the former approach here and the latter approach
in the next section.

This situation commonly arises in goals ofsimple attainment. For example, suppose that
we want to deliver a single object to a warehouse and the time at which that object is delivered
is significant. Our static attributes might then be “delivery-made-at-this-time,” taking values
True and False. We can have a chronicle in which the value is False at every time point, but
we cannot have one in which the value is True at every time point. In fact, we also have
no feasible chronicles in which the value is True at some time then False at all later times,
which was used in the construction of the assessment example. Fortunately, in this case we
can assess the utility function directly: for horizonh, we have onlyh+1 possible chronicles
representing all possible different times the delivery could occur.

5.1.3. When AI is Indirectly Achievable.One common type of goal in which the
attributesAi may violate theAI assumption is anaspiration-levelgoal.9 An aspiration-level
goal is one in which we want to attain a particular level or accumulation of a quantity.

For example, suppose that in the preceding tomato delivery example our goal was to
deliver 100 tons and deliveries in excess of this amount have no value. If the static attributes
Ai are defined as “the amount of tomatoes delivered at timei ,” then AI no longer holds. If
10 tons of tomatoes were delivered each hour between 9 a.m. and 6 p.m., reaching a total
of 100 tons by 6 p.m., thenAI would require the decision maker to be indifferent regarding
the amount of tomatoes delivered after 6 p.m. The violation ofAI becomes apparent when
one realizes that the decision maker’s preferences over an additional delivery at 7 p.m. must
depend on whether 100 tons or 0 tons had been delivered prior to that time.

It is important to note that such violations ofAI occur only when the value of the static
attributes exceed the aspiration level. Violations can therefore be avoided by defining static
attributes so they do not have a threshold level that can be attained and exceeded.

Techniques for choosing the “right” attributes over which to express preferences (so that
independence assumptions can be made) have been studied extensively (Bell 1977, Ch 18;
Keeney & Raiffa 1976, Ch. 2). One of the commonly used methods is to transform the
original attributes into new ones for which the desired independence property does apply.

For our example, we define new attributesBi , i = 0,1, . . . , 16 as “the number of tons
delivered at timei that does not cause the total of all deliveries to exceed the aspiration level
of 100 tons.” Formally, theBi are derived from theAi as follows:

B0 = min {A0,100}

Bi = min

Ai ,100−
i−1∑
j=0

Bi

, 1≤ i ≤ 16.

Through this transformation we have grouped outcomes over theAi attributes into equiv-
alence classes, each of which has a particular pattern of values ofAi up to the time that the

9Recall that we are discussing an individual deadline goal here, so theAi attributes refer to the evolution of the static goal
component over time. Violation of AI in this context means that preferences overwhenthe goal is achieved are not independent.
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aspiration level is met. These are also equivalence classes with respect to preference: the
decision maker is indifferent among all the elements of each class.

Note that in this case, assessments of the coefficientski and the utility functionsui are
accomplished differently. The reason is that outcomes in which eachBi is 10 are impossible,
and using impossible outcomes in lotteries for assessment can be problematic.

To solve this problem we realize that a single-attribute utility function, such asui , can
be assessed by choosingany two attribute values as references as long as one is preferred
over the other. The assessment is typically easiest for the decision maker if the least and
most desirable outcomes are chosen, but this is not strictly necessary. We address the issue of
getting the maximum “spread” between reference values in the assessment example below.

For this example we can setb+i to five, and thus ensure that
∑16

i=0 b+i = 85< 100. Since
ui (5) is set to one,ui (10) will be greater than one. This is perfectly acceptable since utility
functions are unique only up to a positive linear transformation.

5.1.4. Extended Assessment Example.Suppose our goal is to deliver four tons of
tomatoes to a warehouse by a deadline 240 minutes from now and that our planning horizon
is 280 minutes from now. We represent time using a discrete set of points denoting one-minute
intervals from 240 to 280:t = 1,2, . . . , 40. Since we have a goal with an aspiration level,
we take the static attributes to be “the number of tons delivered that does not cause the total
deliveries to exceed four tons” at each of the time points 1 to 40. We assume that preferences
over values of these attributes are additive independent and stable, and so can be captured by
the additive utility function of Eq. (12). Once again, this analysis holds for MUI attributes as
well, and we are making theAI assumption for expository purposes only.

To specify the utility function, we must first choose the reference valuesa−i anda+i . To
afford the maximum possible “spread” between outcomes for the assessment of theki , the
obvious choice is the least and most preferred values that can possibly be attained at all time
points in the outcome. Under this choicea−i = 0, anda+i is the outcome that would have us
delivering the four tons equally at each of the 40 time points:a+i = 4

40 = 0.1.
Next, we must assess the temporal coefficientski and theu(ai ) function. To assesski

values, we elicit a few points and fit a curve to them, keeping in mind that theki must sum to
one and that the curve must be monotonically nonincreasing ini . We ask the decision maker:

For what probabilityp1 are you indifferent between the lottery〈(.1, .1, . . . , .1), p1,
(0,0, . . . , 0)〉 and the outcome(.1,0, . . . , 0)?

Suppose he responds with the value2
41. After asking him for more of theki values and fitting

a curve to the points, we find that the values ofki form a linearly decreasing function ofi .
Since the indexi ranges from 1 to 40,ki = 2

41− (i−1)
820 , and our utility function takes the form:

UG(c) =
40∑

i=1

[
2

41
− (i − 1)

820

]
u(ai ). (14)

Now we must determine the functionu(ai ). To assess the single-attribute utility function,
we must first choose two values as reference points. We then ask the decision maker about
his preferences over lotteries using the chosen reference values as outcomes. For ease of
assessment, we would like to choose the extreme values 0 and 4 as reference points, but
we have already committed toa−i = 0 anda+i = .1, sou(0) = 0 andu(.1) = 1. To solve
this problem, we can assess a utility functionu′(ai ) using 0 and 4 as the reference values,
then scale it by dividing byu′(.1) to obtain a functionu(ai ) for which u(.1) = 1. Utility
functions are unique up to a positive linear transformation, so this scaling preserves the
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FIGURE 2. Example utility function for the static attribute.

assessed preference order, and the functions arestrategically equivalent. Therefore, we let
u′(0) = 0 andu′(4) = 1 and choose the deadlinet = 240 as the time at which to assess the
utility function.

We begin by asking the decision maker:

Forwhatamountofdeliveryx areyou indifferentbetween theoutcome(x,0,0, . . . , 0)
and the lottery〈(4,0,0, . . . , 0), 0.5, (0,0, . . . , 0)〉?

Suppose the decision maker is risk neutral and responds with the value 2. Then we know that
u′(2) = .5u′(4)+ .5u′(0) = .5. Now we can ask him:

Forwhatamountofdeliveryx areyou indifferentbetween theoutcome(x,0,0, . . . , 0)
and the lottery〈(2,0,0, . . . , 0), 0.5, (0,0, . . . , 0)〉?

Suppose he responds with the value 1. Then we haveu′(1) = .25. We can continue asking
these questions to obtain as many points along the utility function as we like. Once we feel we
have enough data points, we can fit a curve. We can obtainu by dividingu′ by u′(.1) = 1/40.
Thus,u(x) = 10x. The curve foru is shown in Figure 2.

5.1.5. Comparing Plans. We can now use the assessed utility function to compare
two plans,P1 andP2. Suppose thatP1 has a 50% chance of resulting in the chronicle
c1 = (1,1,0, . . . , 0) and a 50% chance of resulting in the chroniclec2 = (2,0,0, . . . , 0).
Further, suppose thatP2 has a 60% chance of resulting in the chroniclec3 = (0,2,0, . . . , 0)
and a 40% chance of resulting in the chroniclec4 = (2,0,0, . . . , 0). Referring to the graph
of u(ai ), we find thatu(1) = 10 andu(2) = 20. Substituting these values into Eq. (14) above
yields u(c1) = 39.5/41, u(c2) = 40/41, u(c3) = 39/41, andu(c4) = 40/41. Therefore,
the expected utility ofP1 is 39.75/41, and the expected utility ofP2 is 39.4/41. Hence,P1
is preferred toP2. This preference is plausible, since both plans deliver an equal amount of
tomatoes, andP1 has a better chance of making the deliveries at the deadline.
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5.2. Symbolic Static Attributes

Our discussion of elicitingUGA functions has to this point dealt only withnumericstatic
attributesAi , for which we assessed theu(ai ) function by fitting a curve to the range of
numeric values that theAi could assume. In many planning applications, however, the goal
has a more symbolic nature, e.g., a conjunction of atomic propositions. In these cases, the
static attribute has a discrete set of values.

We now consider how to define a function specifying partial satisfaction of symbolic-
attribute goals. Consider, for example, the (deadline) goal of having blockB on top of a red
block by noon. We want to represent situations like one in which it is important to haveB
on an object, but perhaps less important that the object be red.

The static component utility functionu(ai ) for a symbolic-attribute goal is defined in
terms of a sequenceS of mutually exclusive and exhaustive formulas(σ1, σ2, . . . , σn) such
that:

• σn is the most preferred formula (representing complete satisfaction)
• σi is preferred overσj if i > j .

Theu(a) value is then assigned to each formula, with the condition thatu(σ1) = 0 and
u(σn) = 1. For the preceding example,Smight be

i σi u(σi )

1 ¬∃xOn(B, x) 0.0
2 ∃xOn(B, x) ∧ ¬Red(x) 0.7
3 ∃xOn(B, x) ∧ Red(x) 1.0

As we suggested, some partial satisfaction is accrued from making theOn relationship true
even without theRed, but no satisfaction is accrued ifRedis true withoutOn.

The simplest such function would be one that admits no partial satisfaction of the goal.
Recall the example in Section 4.2, of having the truck loaded and fueled by 7 a.m., where
accomplishing one goal without the other yields no utility. Theu(ai ) function for that
conjunction is:

i σi u(σi )

1 ¬(truck-loaded∧ truck-fueled) 0.0
2 truck-loaded∧ truck-fueled 1.0

The rest of the analysis for quantitative goals—the independence assumptions, elicitation
of temporal weighting coefficients, and definition of theUGA function by combiningki with
u(ai )—now applies. Theu(ai ) value in this case is the one associated with the (unique)σi
value that is true at the time the function is evaluated.

5.3. Maintenance Goals

A maintenance goalmaintain-over( φ, tb, te) specifies thatφ must hold throughout an
interval [tb, te], whereφ is a formula that expresses some constraints on the value of a variable
A, which is defined at all time points during the interval. We assume thatA changes value at
a finite numbern of time pointst1, t2, . . . tn−1 (wheretb = t0 < t1 < · · · < tn−1 < tn = te).
The interval [tk−1, tk] is denoted byIk, for k = 1,2, . . . , n, and the value ofA during Ik is
denoted byak. The duration ofIk is denoted bydk: dk = tk − tk−1.

If the decision maker’s preferences over attribute/interval〈Ak, Ik〉 pairs are additive
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independent, we can express the maintenance goal utility function in an additive form:

UG(c) =
n∑

k=1

u(ak, Ik). (15)

Furthermore, if the utility functionu(ak, Ik) depends only on the duration of the interval
Ik, then the utility function for the maintenance goal takes the following form:

UG(c) =
n∑

k=1

u(ak,dk). (16)

We can normalizeu by settingu(a−k , te− tb) = 0 andu(a+k , te− tb) = 1.
A more detailed account of maintenance goals is provided in Haddawy and Hanks (1993).

5.4. Summary

This concludes our formal development of the utility model. We made two main struc-
tural assumptions: (1) mutual utility independence among top-level goals, and (2) for each
goal, mutual utility independence among elements of the temporal sequence of static attribute
values it generates. The result is a model that is decomposable into individual utility func-
tions for each goal, and within each goal decomposable into temporal and static component
preferences.

We have already shown how this decomposition aids in the elicitation process. We now
turn to computational matters, showing how the decomposition lets an algorithm use the
model’s structure to identify attributes and values that lead to high-utility outcomes, and to
bound the expected utility of partially constructed plans so that unpromising candidates can
be quickly eliminated from consideration.

6. USING UTILITY FUNCTIONS TO GENERATE PLANS

One of the main goals of this paper is to use information in the utility function’s structure
to guide the building of good plans, which generally involves demonstrating that one plan
is preferable to another. At worst, establishing this relationship involves computing the
expected utility of both plans, a process that requires generating and evaluating all possible
outcomes for each. The two main problems with this approach are that: (1) generating and
evaluating all possible outcomes of a plan can be prohibitively expensive (Hanks 1990a) and
(2) a plan cannot be evaluated, and thus alternative plans cannot be compared, until it is
complete(i.e., fully generated or refined). We need ways to compare plans which are cheaper
than computing expected utilities over all possible outcomes and which can be applied to
plans as they are being constructed.

This section suggests three approaches to exploiting the utility function. The first is for-
mal: it demonstrates relationships between partial plans that involve only the plans’ abilities
to satisfy goals, but that guarantee a dominance relationship between the two plans. The idea
is that we can compare two partial plans on their relative abilities to achieve a goal, such that
if certain conditions hold, we can be sure thatanycompletion of one plan will dominateany
completion of the other. Therefore, the inferior plan can immediately be eliminated from
consideration.

The other two approaches to exploiting utility information take the form of implemented
systems. We report on two planners that exploit the ability to use the model to bound the
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expected utility of a partial plan and use that information to prune the search for optimal
plans. The first,PYRRHUS, extends a classical plan-space planner to represent partial goal
satisfaction and resource-related utility; it uses branch-and-bound techniques to guide the
planning process. The second,DRIPS, views the plan-generation process as one ofabstraction
refinement: the planner begins with an abstract plan and repeatedly replaces parts of it with
more specific instructions. An abstract plan defines a certain expected-utilityinterval, and
each refinement narrows the interval. Whenever the intervals for two partial plans do not
overlap, the inferior plan can be removed from consideration.

6.1. Abstract Relationships among Partial Plans

Here is an abstract characterization of the relationship we establish between two partial
plans:

Suppose that one of the agent’s goals isG and that there are two formulas,φ and
ψ , relevant to whetherG is achieved. More particularly, ifφ is true, thenG is mostly
satisfied (φ has ahigh goal-related utilityu(ai )), whereas ifψ is true,G is mostly
unsatisfied(ψ has alow goal-related utility).

Further suppose that there are two alternative plans,P1 andP2. Both are still un-
der construction, but we can establish some characteristics of each.P1 is a promising
candidate: if it is executed, the probability thatφ is true by some timel is at least
α. P2 is currently unpromising: if it is executed, the probability thatψ is true at all
times beforem is at leastβ. The question is under what circumstances we can say
thatP1 dominatesP2 and as a result pruneP2 from the search space.

We show that dominance holds ifα exceeds a particular function of five parame-
ters:β, the lowestu(ai ) consistent withφ, the highestu(ai ) consistent withψ , l , and
m. Under these circumstances,P1’s expected utilitymustexceedP2’s, regardless of
how they are subsequently refined.

Having established a relationship of the above form, the planner need only establish two
probability bounds associated with formulasφ andψ in order to eliminateP2 from further
consideration.

Two advantages accrue from this technique:

1. It reduces the general problem of expected-utility calculation to the more specific task of
deciding whether a particular probability exceeds a particular threshold.

2. It allows us to perform the expected-utility analysis incrementally. At each stage of the
planning process, we can eliminate some plans from consideration, again limiting the
amount of inference needed to choose a good course of action.

The first advantage is especially important, since it allows the planner to focus its attention on
two subsets of the plan’s possible outcomes: those in which the threshold is met and those in
which it is not. Hanks (1990b) shows how the ability to reduce the plan-evaluation problem to
one of computing the probability of a proposition with respect to a threshold allows efficient
evaluation of probabilistic plans. We demonstrate these relationships for one class of goals:
those with temporal deadlines and symbolic static attributes.

6.1.1. Deadline Goals. We now compare two plans on the basis of their ability to
achieve a goal whose temporal component is a deadlinetd and whose static component is
symbolic (see Section 5.2). Assume that time is discrete and that we have the additiveUG
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function of Eq. (12). Formulaφ indicates a high level of goal satisfaction and formulaψ a
low level. Consider the case in whichP1 is likely to achieveφ at or close to the deadline,
andP2 is likely to do no better thanψ until some time well past the deadline. Under what
circumstances can we say thatP1 has higher expected utility thanP2?

Suppose the goal’su(ai ) function is defined as follows:

i σi u(σi )

1 ¬On(B,C) 0.0
2 ¬On(A,B) ∧On(B,C) 0.5
3 On(A,B) ∧On(B,C) 1.0

In other words, we accrue partial satisfaction by achieving On(B,C) alone, but no partial
satisfaction by achieving On(A,B) alone. In this case the two formulas might be:

φ = On(B,C) ψ = ¬On(B,C).

Let holds(φ, t) indicate that formulaφ is true at timet . Suppose that for planP1, we can find
some time pointl ≥ td such that:

P(∀t ′ (l ≤ t ′ ≤ n)→ holds(φ, t ′)|P1) ≥ α.
For planP2, suppose we can find some time pointm≥ td such that:

P(∀t ′ (1≤ t ′ < m)→ holds(ψ, t ′)|P2) ≥ β.
Under what conditions can we say that planP1 is preferable to planP2? We must

determine the minimum attainable value ofEU(P1) and the maximum attainable value of
EU(P2) consistent with these two constraints. Letσφ be the formula of lowestu(σi ) consistent
with φ (in the example,σφ = σ2). We are guaranteed the existence of such a formula since
theσi are exhaustive. The expected utility of planP1 is minimized if:

1. With probabilityα, σφ is achieved at timel , and the goal is not partially achieved at any
time earlier thanl .

2. With probability 1− α, the goal is completely unsatisfied.

So by Eq. (12) we have:

EU(P1) ≥ α ·
n∑

i=l

ki u(σφ) + (1− α) · 0.

Now letσψ be the formula ofhighest u(σi ) consistent withψ (σψ = σ1). The expected
utility of planP2 is highest if:

1. With probabilityβ, σψ is achieved by the deadline, and the goal is completely achieved
immediately after timem.

2. With probability 1− β the goal is completely satisfied at the deadline.

Again by Eq. (12):

EU(P2) ≤ β
[

m∑
i=1

ki u(σψ)+
n∑

i=m+1

ki

]
+ (1− β).
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And we therefore know thatP1’s expected utility is higher thanP2’s if:

α >
β[
∑m

i=1 ki u(σψ)+∑n
i=m+1 ki ] + (1− β)∑n

i=l ki u(σφ)
. (17)

The values forσφ andσψ and the timesl andmdetermine the usefulness of our probability
bounds. A timel close to the deadline and aφ that is inconsistent with low-utilityσi values
give us a high lower bound onEU(P1). Similarly, a timem well after the deadline and aψ
inconsistent with high utilityσi values give us a low upper bound onEU(P2).

Additional structure in the static component can make dominance relationships easier to
derive. For example, we might consider a common static component that has an additional
structural feature: an ordered conjunction of expressionsg1 ∧ g2 ∧ · · · ∧ gn in which each
conjunct dominates each subsequent conjunct. Thus any outcome that satisfiesg1 is preferable
to everyoutcome that does not satisfyg1, even if it satisfies all the others. For example, if
our conjuncts areg1, g2, andg3, our strictly ordered static utility function would meet the
constraint that satisfyingg1 is preferable to not satisfying it, regardless of whetherg2 or g3
is satisfied. In this case two plans can be compared incrementally: first on their respective
abilities to achieveg1, then on the basis ofg2, and so on. The ability to compare plans
incrementally in this way can result in computational savings when establishing dominance
relationships.

6.1.2. Maintenance Goals.Relationships between two plans that try to achieve main-
tenance goals can be developed in a similar manner. Haddawy and Hanks (1993) performs
an analysis for maintenance goals—those in which the temporal component requires that the
static component hold over an interval. The general relationship established is between: (1)
a planP1 that is likely to keep a conditionφ true over a long subinterval of the maintenance
interval, whereφ has a highu(ai ) value, and (2) a planP2 that is likely to keep a condition
ψ true over a long subinterval of the maintenance interval, whereψ has a lowu(ai ) value.
In this case, ifφ has sufficiently high utility compared toψ , and if the intervals over whichφ
andψ are maintained are sufficiently long, and ifP1 andP2 are sufficiently likely to achieve
φ andψ , respectively, then we can prove thatP1 dominatesP2. The result is a formula
analogous to Eq. (17), relating the relative value ofφ versusψ and the amount of time each
formula is maintained.

6.2. Least-Commitment Optimal Planning:PYRRHUS

Several factors limit the ability of classical planning algorithms to produce “good” plans
(as measured by a utility model like the one we propose). Of these factors, two are primary.
First is the inability to reason about the agent’s uncertainty as to the state of the world and the
effects of its actions. Second is the inability to rank plans on the basis of the consumption and
production of resources, which is how we model residual utility. Generally, these algorithms
employ asatisficingsuccess criterion, searching for any plan that provably achieves the goal.

The PYRRHUS planner (Williamson and Hanks 1994; Williamson 1996) addresses the
problem of buildingoptimalplans, using a restricted form of the utility model developed in
this paper. PYRRHUS, like classical planners, assumes certainty in the world state and in the
effects of actions. It extends theUCPOPgenerative planner (Penberthy and Weld 1992) to
handle quantitative (integer or real-valued) attributes, like fuel level or monetary position.
Action preconditions can be expressed in terms of equality and inequality constraints on
these as well as symbolic attributes; actions can produce or consume specific amounts of
these quantitative attributes. For example, taking a trip from pointA to pointB might require
the vehicle to be in working order (a symbolic attribute), cause the vehicle to be at point
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B (another symbolic attribute), consume five gallons of fuel, and cost $10 in tolls (both
quantitative attributes). Refueling the vehicle consumes one quantitative attribute (money)
but produces another (fuel).

Using this extended action representation,PYRRHUScan build a plan that is optimal ac-
cording to a restricted form of our utility model.PYRRHUSallows goals to have a symbolic
static content and a temporal deadline. Preferences over the consumption and production
of resources are expressed by identifying certain quantitative attributes as resources, then
providing a function that maps the joint level of these resources into a numeric value rep-
resenting preferences over the joint asset position. (This function can be unbounded if the
domain offers an opportunity to generate net wealth.)

The questionPYRRHUSaddresses is whether the resulting optimization problem can be
solved efficiently using classical planning techniques. More specifically,PYRRHUSaddresses
whether structure in the utility model can be exploited to find an optimal plan without searching
the entire space of possible solution plans. An analogous question is whether heuristic search-
control knowledge for the classical satisficing problem (i.e., a planning problem in which there
is a symbolic goal, no temporal deadline, and zero-cost resources) can be effectively employed
to solve the extended optimization problem.

PYRRHUSuses a combination of plan-space search and branch-and-bound pruning to solve
the planning problem. Classical plan-space search views the problem as a search through a
space ofpartial plans, each a partially ordered and partially instantiated set of actions. The
initial plan contains no steps. At each stage of the search, more structure (i.e., new actions,
new step orderings, new variable bindings) is added to the plan. The search terminates when
a plan is found that satisfies the goal (acompleteplan). Heuristic search-control knowledge
is brought to bear at each iteration of the search to choose new structure that will quickly lead
to a complete plan.

PYRRHUSuses this basic algorithm along with heuristic search-control knowledge de-
veloped for classical goal-satisfaction problems in a transportation planning domain. But
PYRRHUScannot stop whenever it finds a plan that satisfies the goal, because there might
be a better plan—one that satisfies the goal closer to the deadline or at a lower cost—in an
unexplored region of the search space.

The concern then becomes whether significant parts of the search space can be pruned
without exploring them exhaustively. This amounts to the question of whether a significant
number of partial plans can be rejected as suboptimal without refining them completely.
PYRRHUS evaluates a partial plan by computing upper and lower bounds on its value, repre-
senting the minimum and maximum values of any completion of that plan. An upper bound
can be placed on the value of satisfying each goal (in that the earliest possible time point
at which the goal could be satisfied can be determined) and on the value associated with
resource consumption and production (in that bounds can be placed on the net consumption
of every resource in all completions of the plan). The bounds are then compared to the value
of the current best alternative. If the new alternative’s upper bound is less than the current
best lower bound, the partial plan can be rejected; if the lower bound is greater than the
current best upper bound, the partial plan becomes the current best alternative. This is the
deterministic equivalent of applying Eq. (17) to establish dominance relationships between
partial plans. These bounds also can be used for heuristic guidance of the search, biasing the
search in favor of alternatives with promising lower bounds.

Two interesting empirical questions arise: (1) Do classical goal-oriented search-control
heuristics provide significant guidance to the extended optimization problem? and (2) Does
the branch-and-bound algorithm actually allow sufficient pruning of the search space to make
the optimization problem feasible to solve?

The analysis in Williamson and Hanks (1994) used a suite of 13 goal-satisfaction problems



UTILITY MODELS FORGOAL-DIRECTED, DECISION-THEORETICPLANNERS 415

in a cargo-delivery domain; each of these problems generates a class of optimization problems
for various deadlines, partial-satisfaction functions for deadlines, consumption functions
for resources, and relative weighting factors among the goal and resource attributes. Six
search-control heuristics were developed for the goal-satisfaction problem that allowed all
13 problems to be solved efficiently.10

Experiments in Williamson and Hanks (1994) demonstrated that performance on the
optimization problem clearly benefited from classical goal-oriented search-control rules. In
fact, the speedup in the optimization case was generally more dramatic than in the classical
goal-satisfaction problem. Intuitively, this is because effective search control led quickly
to a plan that satisfied the goal (and thus had a high lower utility bound), which became a
good benchmark against which other candidates could be compared. Unpromising candidates
could then be rapidly pruned.

The numeric parameters associated with a particular instance of the optimization prob-
lem determined whether the optimization problem was easier or harder than the classical
goal-satisfaction problem. One interesting qualitative property we discovered was that the
optimization problem turned out to be significantlyeasierto solve than the satisficing problem
when the temporal deadline was set early; this meant that all feasible solutions to the problem
would miss the deadline to some degree. The optimization problem was consistentlyharder
to solve than the satisficing problem when the temporal deadline was set late, which meant
thatanyminimal feasible solution to the problem met the deadline. In less extreme cases the
time to solve the problem varied significantly with the particular numeric parameters. See
Williamson and Hanks (1994) for a more detailed analysis and Williamson and Hanks (1996)
for a discussion of heuristic search-control techniques common among classical plan-space
planners which can be used to produce optimal plans as well.

We can conclude that an optimal course of action can be found efficiently, at least in some
interesting cases. Furthermore, the ability to generate optimal plans dependscrucially on the
structure of the utility model. This structure is exploited in two phases of the planning process.
First, the symbolic expression representing complete satisfaction of the static component is
used in the plan-generation process to choose appropriate actions to insert into the plan (using
the classical “backchaining” technique for plan generation). Second, the numeric attributes
and associated parameters are used to compute bounds on a plan’s value, thus allowing
unpromising partial plans to be pruned and promising partial plans to be favored. Neither
of these algorithmic techniques could be employed without a utility model that made this
structure explicit.

6.3. Efficient Refinement Planning under Uncertainty: DRIPSand Qualitative Filtering

This section presents quantitative and qualitative ways to eliminate suboptimal classes
of plans without explicitly examining all plans in that class. It also describes how these tech-
niques exploit the structure of the utility function to facilitate computation. While qualitative
techniques can be used to filter out classes of obviously bad plans, at some point one must
resort to quantitative reasoning about expected utility in order to evaluate tradeoffs. We first
present theDRIPS decision-theoretic refinement planning system (Haddawy and Suwandi,
1994; Haddawy, Doan, & Goodwin, 1995) which uses hierarchical abstraction to reduce
the computational cost of quantitatively reasoning about plans. We then describe qualitative
techniques that can be used as a filter to reduce the space of plans thatDRIPSmust search.

10The time required to solve the problem increased linearly with the number of steps in the solution plan.
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FIGURE 3. Specification of residual utility (UR) function.

6.3.1. Decision-Theoretic Refinement Planning.TheDRIPSplanner is capable of find-
ing the optimal plan under uncertainty for the deadline and maintenance goal utility functions
presented in this paper, as well as for arbitrary nontemporal utility functions. DRIPSsearches
through the space of possible plans by using action descriptions organized into an abstrac-
tion/decomposition network. The planner builds abstract plans, compares them, and refines
only those plans that might be refinable to the optimal plan.

We describeDRIPS by demonstrating how it handles a sample problem. Suppose we
want to find the best plan for delivering four tons of tomatoes from a farm to a warehouse
within 240 minutes, with a deadline horizon of 280 minutes. We use theUG function from
Section 5.1.4 and take the top-level utility function to be

U(c) = UG(c)+ (.02)UR(c),

whereUR is a function of the amount of fuel consumed. TheUR function is shown in
Figure 3.

The delivery plan consists of driving a truck from the depot to the farm, repeatedly loading
the truck, driving the loaded truck to the warehouse, and returning to the farm as many times
as necessary. The truck’s capacity is two tons. Descriptions of the available actions are shown
in Figure 4. Each action is described with a tree structure, in which the first-level branches
are labeled with conditions, the second-level branches are labeled with probabilities, and
the leaves are labeled with the effects of the action. Each branch represents a conditional
probability: the probability of the effect given the action and the condition. The conditions
on the branches are required to be mutually exclusive and exhaustive, and the probabilities
for any condition must sum to one. An action description need not include probabilities or
conditions. If the probability is omitted, it is taken to be 1, and if the condition is omitted, it
is taken to be true. Deterministic actions are labeled with a single outcome.

The conditions on the branches specify conditions that must be true just before the action
is executed. The effects of the action are specified in terms of the action’s duration and the
attributes that it changes. For example, in the top branch of the “Go to farm on road B”
action,time= time+ 15 indicates that the duration is 15, andfuel= fuel−1/2 means that
the fuel level after the action is one half gallon less than before it. We assume that the only
changes to the world are those explicitly mentioned in the action descriptions. Thus, in this
particular branch the world remains in its state prior to the action untiltime+ 15. Our action
representation is similar to that introduced by Hanks (1990b).

There are two possible routes we can take from the depot to the farm: road A and road B.
Road A is longer but has no delays, while travel along road B might be delayed due to
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Go to farm
on road A

time = time+30
fuel = fuel–1

Go to farm
on road B

time = time+15
fuel = fuel–1/2

time = time+45
fuel = fuel–1/2

¬construction

               construction

Load open
truck

Load closed
truck

time = time+15
tons–in–truck = 2

                        0.8

                           0.2

time = time+10
tons–in–truck = 2

time = time+25
tons–in–truck = 2

Drive open truck
on mountain road

Drive open truck
on valley road

time = time+60
fuel = fuel–2
tons–delivered = tons–delivered + (.8) tons–in–truck

time = time+70
fuel = fuel–3
tons–delivered = tons–delivered + (.9) tons–in–truck

time = time+70
fuel = fuel–3
tons–delivered = tons–delivered + tons–in–truck

                   sunny

Drive closed truck
on mountain road

Drive closed truck
on valley road

time = time+60
fuel = fuel–2
tons–delivered = tons–delivered + tons–in–truck

time = time+70
fuel = fuel–3
tons–delivered = tons–delivered + tons–in–truck

¬sunny

Go back time = time+50
fuel = fuel–2

FIGURE 4. Action descriptions for the delivery example.

construction. The probability that construction is taking place is 0.2. These options are
represented by the first two action descriptions in Figure 4.

Once at the farm we must load the truck. We have a choice between two trucks at the
depot: an open truck and a closed, cushioned truck. The open truck is easy to load; there is
an 80% chance that the closed truck can be loaded quickly and a 20% chance that loading it
will take longer. The next two diagrams in Figure 4 depict these actions.

Once the truck is loaded, we must drive it to the warehouse. We have a choice between
two routes: the mountain road and the valley road. The mountain road is shorter but bumpy.
If we drive the open truck on the mountain road, the bottom 20% of the tomatoes will be
crushed. If we drive the open truck on the valley road and the sun is shining, the top 10% of
the tomatoes will be spoiled by the sun. This combination of options results in the next four
action descriptions in the figure. Finally, the action of returning to the farm is depicted at the
bottom of Figure 4.

TheDRIPSsystem searches for the optimal plan using an abstraction/decomposition net-



418 COMPUTATIONAL INTELLIGENCE

load & drive truck

road A road B

load & drive
open truck

load & drive
closed truck

load open 
truck

drive open truck
to warehouse

load closed
truck

drive closed truck
to warehouse

drive open on
mountain road

drive open on
valley road

drive closed on
mountain road

drive closed on 
valley road

deliver tomatoes

do nothing one delivery two deliveries

go to farm load & drive truck one delivery go back load & drive truck

FIGURE 5. Abstraction/decomposition network. Abstraction relations are shown with dashed lines, and
decomposition relations are shown with solid lines. Actions shown in bold have decompositions or abstractions
that are displayed elsewhere in the figure.

work that describes the space of possible plans and their abstractions. The network for this
problem is shown in Figure 5. An abstract action has one or more subactions, which them-
selves may be abstractions or primitive actions. A decomposable action has one or more
subplans that must all be executed in sequence. For example, the task “deliver tomatoes” can
be instantiated into any of the three lower level plans: “do nothing,” “one delivery,” and “two
deliveries.” The decomposable action “one delivery” consists of the sequence “go to farm”
then “load & drive truck.”

The abstract actions used byDRIPSare formed by grouping together a set of analogous
actions, which are considered to be alternative ways of realizing the abstract action. The set
is characterized by the features common to all the actions in it. We can then plan with the
abstract action and infer properties of a plan involving any of its instances. We call this type
of abstractioninteraction abstraction. For an exposition of our theory of action abstraction
see Doan and Haddawy (1996).

Given this representation of the planning problem, we evaluate plans at the abstract level,
eliminate suboptimal plans, then further refine remaining candidate plans. An abstract plan’s
outcomes are sets of outcomes of more concrete plans. Since different probability and utility
values can be associated with each specific outcome, in general a probability range and a
utility range will be associated with each abstract outcome. Thus, the expected utility of an
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abstract plan is represented by an interval that includes the expected utilities of all possible
instantiations of that abstract plan. Refining the plan, that is, choosing an instantiation, can
only narrow the interval. We can stop refining an abstract plan when its upper expected utility
bound is less than the lower bound of some other plan.

Forty-one possible plans are implicitly encoded in the abstraction/decomposition net-
work, and we want to choose the one that maximizes expected utility. DRIPS explicitly
computes the expected utility of 12 plans, thus giving a pruning rate of 71%, and returns the
plan “go on road B,” “load closed,” “drive closed on mountain,” “go back,” “load closed,”
“drive closed on mountain” as the optimal plan. Although performance of the planner on this
small example problem is not overwhelmingly impressive, the efficiency of the planner tends
to increase with an increase in problem size. For example, in a medical domain containing
over 6,000 possible plans, we obtained a pruning rate of 89%, and the planner significantly
outperformed a standard branch-and-bound algorithm (Haddawy, Doan, & Kahn 1996).

To evaluate plans,DRIPS must compute the expected utilities of all outcomes resulting
from projecting the plans. This computation is facilitated by the structure of the utility
function. In DRIPS an outcome is represented by a series of states in chronological order,
specifying changes caused by actions. In the delivery example, we specified an outcome
in terms of the amount of fuel in the tank, tons of tomatoes in the truck, and the total tons
of tomatoes delivered at each point in time. Since the only changes to the world are due
to the agent’s actions, we can compute the value of the static attributes (current number of
tons delivered) in theUG function by taking the difference between the current value of
tons-deliveredand its previous value. For example, we could have an outcome specified by
tons-delivered= 1.8 at time 235 andtons-delivered= 3.8 at time 260. This means the stream
of deliveries consists of 1.8 tons delivered at timepoint 240 (deliveries before the deadline
are counted as occurring at the deadline); 3.8−1.8= 2 tons delivered at timepoint 260; and,
for all other timepoints from 240 to 280, zero tons delivered. We can simply compute the
utility by computing the contributions to utility of the two times and adding them.

6.3.2. Qualitative Filtering. For two cumulative probability distributionsF andG,
we say thatF stochastically dominates Gif for any given valueb we haveF(b) ≤ G(b).11

An equivalent definition is that for all monotonically increasing functionsφ∫
φ(b)d F(b) ≥

∫
φ(b)dG(b).

The above dominance is referred to in the literature asfirst-order stochastic dominance
(Whitmore and Findlay 1978).

Consider two plansB1C andB2C, whereB1, B2, andC are action sequences. Projecting
B1 produces a cumulative probability distributionF over the space of utility values (replac-
ing each outcome resulting from executingB1 with its utility value). ProjectingB2 yields
G. Now suppose that projectingC on the outcomes that result from projectingB1 and B2
acts as a monotonically increasing function on the utilities of those outcomes, and thus is
order-preserving. It follows from the definition of first-order stochastic dominance that if
F stochastically dominatesG, then the cumulative probability distribution resulting from
projectingB1C dominates the distribution resulting from projectingB2C. Consequently, the
second plan has a lower expected utility value than the first and can be eliminated from further
consideration.

Unfortunately, action sequenceC is unlikely to be order-preserving in most planning
domains. In other words, given thatu(c1) ≥ u(c2), wherec1 and c2 are two outcomes

11Intuitively, this means thatF puts more probability on larger values ofb.
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resulting from projectingB1 or B2, it is unlikely thatC will transform c1 (c2) into c′1 (c
′
2)

such thatu(c′1) ≥ u(c′2). We can, however, expect thatC will be order-preserving for a subset
of the outcome space, such as the setsD = ⋃i 〈Xi ,Y0〉, where〈Xi ,Y0〉 denotes an outcome
whose utility attributes areXY, and attributeY is fixed at valueY0. It is easy to see that ifC is
order-preserving forX, andX is preferentially independent ofY, thenC is order-preserving
for D. This observation can be easily exploited in an algorithmic fashion to yield efficient
qualitative filtering. We demonstrate this by discussing how it can be exploited in the delivery
example.

A brief inspection of the problem description shows that any plan involving more than
two deliveries is not optimal, since any delivery other than the first two would always miss
the deadline horizon. Consider now the two plans “go to farm” and “do nothing.” The first is
dominated by the second, since it consumes more fuel for the same amount of tons delivered
(0). Knowing that fuel is preferentially independent of tons delivered, and that less fuel is
preferred to more fuel, is sufficient to establish the dominance relation. In a similar fashion
we could rule out many other obviously nonsensical plans. This was done implicitly when
we constructed the abstraction/decomposition network in Figure 5.

Consider two actions,B1 “drive closed on mountain road” andB2 “drive closed on
valley road.” They are analogous actions, and from any planp1 = AB1C we can construct
plan p2 = AB2C, whereA andC are action sequences. LetP1 and P2 be the probability
distributions (over the outcome space) resulting from projectingAB1 andAB2, respectively.
For each outcomeo in P1, there is an outcomeo′ in P2 with the same probability such that
fuel consumption ino′ is greater than ino and streams of deliveries in both outcomes are
identical, but deliveries occur later ino′ than ino. Since earlier deliveries are preferred to
later ones, the utility ofo is greater than that ofo′. This inference is sanctioned by the mutual
utility independence of residual and goal utility and by the properties of the deadline utility
function. Notice that we need not know the exact utility function to make this inference.
The structure of the top-level and goal utility functions — along with the knowledge that we
prefer less fuel consumption to more, and larger deliveries to smaller — is sufficient. From
the preceding analysis, we can conclude thatP1 dominatesP2.

Whatever action sequenceC represents will be applied in a similar fashion to bothAB1
and AB2, since conditions for actions inC do not depend on anything that can be changed
by AB1 or AB2. Applying the transformation represented byC to o of P1 ando′ of P2, we
obtaino′′ ando′′′, respectively. Since all effects in our action descriptions are additive, no
matter what action sequenceC contains, it will transformc ando′ in a linear fashion and
will therefore be order-preserving for fuel and time. Alsoo′′ ando′′′ will contain the same
stream of deliveries, modulo differences in delivery times. So the utility ofo′′ is greater than
that ofo′′′. It follows that the probability distribution resulting from projectingp1 dominates
the one resulting from projectingp2; and the expected utility ofp1 is greater than that of
p2. Hence, the action “drive closed on valley road” can be eliminated from the domain. In
a similar fashion the action sequence “load open truck” then “drive open on valley road” is
always dominated by the sequence “load closed truck” then “drive closed on mountain road”
and can therefore be eliminated from further consideration. The domain consists now of 13
plans, instead of the original 41 plans. The new filtered abstraction/decomposition network
is shown in Figure 6.

This reasoning process can be easily done in an algorithmic fashion, exploiting utility
and domain regularities to perform filtering. We are currently working on developing a
comprehensive algebra of filtering similar to that of Wellman (1990).
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FIGURE 6. Abstraction/decomposition network after filtering.

7. VALIDATION ISSUES AND SUMMARY

Having described the proposed model, we now confront the question of how to evaluate
it. Our main claim is that the proposed model provides a significant extension to classical
goal models, while at the same time allowing effective assessment and generation of plans.
This section makes our claims explicit and defends them. In doing so we also summarize the
structure and assumptions underlying our model. We make the following five claims about
the proposed model, which we discuss in turn:

1. The proposed model provides a significant increase in expressive power over preference
models based only on the satisfaction or nonsatisfaction of symbolic goals.

2. The independence assumptions we make about the agent’s preferences are reasonable.
3. Given these assumptions, the agent’s preferences can be represented by a utility function

of the form we developed.
4. The parameters needed to assess this resulting model can reasonably be obtained.
5. The resulting model can be used effectively by plan-generation algorithms.

The first and second claims are inherently subjective. We noted in Section 2 our three
extensions to goal expressions:

• We added a temporal component to goals, permitting the decision maker to express
preferences aboutwhenthe goal is to be satisfied.
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• We represented partial satisfaction of goals, allowing the decision maker to express
preferences over outcomes in which the goal is not fully achieved. The model allows
reasoning both about partial satisfaction of the goal expression itself (e.g., numeric goals
that are achieved only to some partial level or symbolic subgoals, only some of which
are achieved) and the goal’s temporal component (e.g., soft deadlines).

• We allowed reasoning about resource attributes, permitting the decision maker to balance
the cost of achieving the goal against the benefit of achieving it.

The second claim argues that the assumptions about the decision maker’s preferences
made in Sections 4 and 5 are reasonable. These assumptions follow:

• The decision maker’s preferences over plan outcomes are fully specified byn top-level
goals and by a set of resource attributes that describe how efficiently these goals are
achieved.

• The decision maker’s preferences over his top-level goals and over the production and
consumption of resources are all mutually utility independent. In effect, this means that
the level at which goali is satisfied does not affect preferences over partial satisfac-
tion of goal j 6= i , and further that preferences of partial satisfaction of goals do not
depend on the consumption or production of resources. In making this assumption—
essentially that preferences among levels of satisfaction for different goals are only weakly
interdependent—we made the distinction between top-level goals and interacting sub-
goals and provided a mechanism for representing the interaction among components of
a single goal.

• For each goal, preferences over the sequence of static attribute values generated by a
plan are mutually utility independent over time. This assumption essentially means
that preferences overwhena goal is (partially) achieved can be considered separate
from preferences over theextent to whichthe goal is achieved. We noted that in some
cases (e.g., for aspiration-level goals) this assumption does not hold and we discussed
techniques for transforming the attributes into a form in which MUI does hold.

The question of whether these assumptions are reasonable is subjective and depends on
the particular decision maker and the particular problem. Sections 4 and 5 discussed the
independence assumptions in some detail, showing how the model could represent common
situations, like interacting subgoals. It is also important to keep in mind thatdetermining
whether the assumptions hold is a crucial part of the modeling process.

The third claim—that the decision maker’s preferences can be represented by a particu-
lar utility function—follows directly from the independence assumptions noted above. Our
analysis builds on results in Keeney and Raiffa (1976) which establish, for example, a cor-
respondence between mutually utility independent preferences for the values of the goal’s
static component over time and a utility function that decomposes into a static utility function
and a set of temporal weighting coefficients.

Fourth, we claim that the utility function so defined can be reasonably assessed. Recall
the parameters of the model:

• two functions for each goal, describing preferences over temporal and static satisfaction
• one or more functions for the resource attributes, describing preferences over production

and consumption of resources
• n + 1 numeric parameters, describing the relative value of then goals and the value of

goal satisfaction relative to resource consumption.
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Once again, this claim must be evaluated subjectively. We should note, however, that the
model’s parameters are determined by the independence assumptions. So an objection that
the model is too complex must be met with an investigation into what additional structure
in the decision maker’s preferences can be exploited (and what expressive power must be
sacrificed) to further reduce the parameters required to complete the model.

The last claim is empirical—that planning algorithms will be able to exploit the structure
in the model to build optimal plans efficiently. To substantiate this claim, we presented two
implemented algorithms. The first extended classical least-commitment planning methods to
handle soft deadlines and resource consumption, but it did not handle uncertainty. The second
implemented the full decision-theoretic semantics of the model but used a more restricted
definition of plan-generation: that of searching a space of possible refinements to abstract
planning operators. In both cases we presented preliminary evidence that the planning process
could be conducted efficiently and further showed that the ability to exploit structure in the
model was crucial to doing so.

In conclusion, we have revealed a wide spectrum of utility models for planning problems,
varying in complexity and structure. At one end we could adopt as a utility measure an ar-
bitrary function over chronicles—an unstructured function with arbitrary expressive power.
At the other end of the spectrum is the simple goal expression—a function with considerable
structure that can be exploited in the planning process, but one that captures a limited class
of preferences. We chose a point nearer the middle of the spectrum, trying to address some
commonly accepted limitations of goals while maintaining the possibility of computational
leverage. Even if our structural assumptions are inappropriate for a particular problem do-
main, there is value in understanding the trade-offs involved and thus how a more appropriate
structure might be built.

8. RELATED WORK

A discussion of related work should begin with multiattribute utility theory, especially
Keeney and Raiffa (1976). We have built a multiattribute utility model for goal-oriented
planning problems that feature partial goal satisfaction and deadlines.

8.1. Goals and Utility Models

In the AI literature the work closest to our own is that of Wellman and Doyle (1991,
1992), which also analyzes the relationship between goals and preference structures. Their
work confronts the question of what it means to say that an agent has some goal. They take
the stance that relative preference over possible results of a plan constitutes the fundamental
concept underlying the objectives of planning. However, they observe that working with
unconstrained utility functions incurs too great a computational expense. As a solution
they propose providing goals with a preferential semantics that preserves the validity of
some common goal operations performed in planning. This semantic account provides a
criterion for verifying the design of goal-based planning strategies, with goals serving as a
computationally useful heuristic. The formal semantics also provides a basis for integrating
goals with other types of preference information.

In contrast, rather than trying to retain the traditional concept of goal, we extend the
concept to incorporate some of the expressiveness of utility theory while retaining some of
the heuristic value of goals. While Wellman and Doyle define a goal as a proposition that is
preferred to its opposite, all other things being equal, we explore the idea of extending the
definition of goal to allow partial satisfaction. We do this in a way that imposes structure on
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the form of the utility function, which we show provides computational leverage and eases
the burden of elicitation.

8.2. Extended Goal Forms in Classical Planning

A few efforts have been made in the classical planning literature to extend the form of
goal expressions: Drummond (1989) introduces a form of maintenance goals, allowing the
constraint that a proposition must remain true throughout execution of a plan. Vere (1983)
implements a concept related to deadline goals: a temporalwindow, or interval within which
an action must be executed. Dean, Firby, & Miller (1988) handle deadlines and actions
with duration. None of these efforts incorporates uncertainty or partial satisfaction into the
representation, nor do they consider partial satisfaction of the goal’s static component.

8.3. Decision-Theoretic Planning and Control

Decision-theoretic techniques have been applied to the planning problem by Feldman
and Sproull (1975) and Dean and Kanazawa (1989). They have also been applied to the
problem of controlling reasoning—choosing among computational actions and actions that
make physical changes to the world (Russell and Wefald 1991; Boddy 1991; Etzioni 1991;
Horvitz, Cooper, & Heckerman 1989).

Of these, Etzioni’s (1991) model is most similar to ours, admitting both partial satisfaction
of goals and also the idea that the value of achieving a goal will tend to change over time.
Both of these elements are supplied directly to his model in the form of three functions:

1. a functioni (g) that measures the “intrinsic value” of goalg
2. a functiond(s, g) that measures the extent to which goalg is satisfied in states
3. a functionF(i (g)d(s, g), s) that measures the extent to which the benefit of goalg should

be realized in states.

The first two functions correspond roughly to our static component, the third to the temporal
weighting coefficient. There is no analogue in his model to our discussion of maintenance
goals. He makes the same assumption we do about the utility independence of top-level
goals.

8.4. MDP Models for Decision-Theoretic Planning

A substantial body of work is emerging in the decision-theoretic planning literature that
uses formal models and computational techniques based on the Markov decision process
(see Puterman 1994 for an overview). Some recent examples in the AI literature are Koenig
(1992), Dean et al. (1993), Boutilier and Dearden (1994), Boutilier and Puterman (1995),
Dean and Lin (1995), and Tash and Russell (1994). Two assumptions made in this literature
deserve attention here: full observability and a time-separable value function.

A large majority of the MDP work assumes full observability,12 which in effect means
that the agent is given immediate and perfect information about what state it is in every
time it takes an action. Under this assumption, the solution plan (orpolicy) is a mapping
from states13 into actions. Algorithms for building these policies typically use some form of

12See Littman, Cassandra, and Kaelbling (1995), Parr and Russell (1995), and Boutilier and Poole (1996) for some
exceptions in the AI literature.

13A state is a complete description of the world at a single point of time. In the notation used in this paper, it corresponds
to a value being assigned to each static attribute.
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dynamic programming: computing a globally optimal policy involves computing a policy that
is optimal under the assumption thatk actions are left to perform, then using that information
to extend to the case wherek+ 1 actions are left. These techniques can be used to compute
a fixed-horizon policy, where the plan is to consist of exactlyN actions. Alternatively, they
can be continued until the policy converges, which solves the infinite-horizon case in which
the plan is to be executed indefinitely.

The benefit of full observability is that at each stage of computation the algorithm must
iterate only over the set of all world states. If perfect run-time information is not available,
the algorithm must consider the set ofprobability distributionsover world states.

The representational framework developed in this paper is not limited to a particular model
of observability, since it comments on the value or preference structure of the domain and not
on the system’s dynamics. We are currently exploring ways in which our representational
framework could be applied to fully or partially observable MDP problems. In doing so
we should note the difference between the preference model we developed and the model
commonly adopted by work in the MDP literature. The latter assumes that a numeric value
representing reward or cost can be represented by a triple of the formv(si ,a, sj ), the value
associated with being in statesi , and taking actiona, which causes a transformation to state
sj . The expected value of executing a policy is then typically taken to be the sum of the values
accrued by all the states visited during that execution. When the policy is to be executed over
an infinite horizon, the rewards accrued in later stages are often discounted.

Thus, the maximum expected value of executing an infinite-horizon policy given a current
state ofs can be expressed as

v∗(s) =
N∑

i=1

P(si |s,a∗(s))[v(s,a∗(s), si )+ γ v∗(si )],

whereN is the number of states,a∗(s) is the action dictated by the policy to be taken when
in states, P(si |s,a∗(s)) is the probability that executing that action will cause a transition to
statesi , v(s,a∗(s), si ) is the reward or cost accrued if that transition actually takes place, and
0≤ γ < 1 is a discount factor that diminishes the impact of actions taken far in the future.

Although there is no analogue in our framework to a discount factor, this model can
capture many of the concepts we develop in our paper, such as rewards for achieving a goal
and costs for consuming resources. Other concepts, most particularly temporal deadlines,
aspiration levels, and maintenance intervals, are more difficult to represent, since they tend
to be defined in terms ofsetsor sequencesof states and not in terms of a single state.

Of course, the MDP state can often be reengineered to accommodate these sorts of goals.
For a simple temporal deadline, the state can be augmented to store the total elapsed time of
plan execution so far. For a simple maintenance interval, the state can be made to store the
total amount of time the maintenance condition has held. For a delivery goal, the state can be
made to store the sum of all the deliveries made to this point not in excess of the aspiration
level. However, in each case the transformation can be awkward and lead to an explosion in
the number of states and thus in the time required to compute a policy.

For cases where most of the value associated with action is accrued by achieving a
goal, algorithms based on the model developed in this paper offer alternatives to dynamic-
programming approaches that iterate over the entire state space. In this sense our aims are
similar to Boutilier, Dearden, and Goldszmidt (1995b), though we are addressing the more
specific case of goal-achievement planning. The relationship between problem structure and
computational leverage is discussed more thoroughly in Boutilier, Dean, and Hanks (1995a).
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8.5. Optimal Planning in the Classical Framework

The work by Perez (1995) also explores algorithms for generating high-quality plans
within the classical planning paradigm and is thus similar to thePYRRHUSwork discussed
previously. Her work is devoted to the problem of learning control rules that will improve
subsequent planning episodes. Its utility model resembles those mentioned above—the cost
of the plan is evaluated as the sum of the costs of its component steps. Therefore, our prior
comments about the difficulty of expressing deadlines and resource consumption trade-offs
also apply.

8.6. Fuzzy Decision Theory

The notion of partially satisfied goals and their role in the decision-making process appears
prominently in the literature on fuzzy mathematics and decision analysis. In particular,
our notion of a degree of satisfaction function closely resembles a fuzzy-set membership
function. The seminal paper in this area is Bellman and Zadeh (1980); also see the papers in
Zimmerman, Zadeh, and Gaines (1984), of which the most relevant to this paper is Dubois and
Prade (1984), who discuss the role ofaggregation operatorsin the decision-making process.
In the language of fuzzy-set theory, a goal may be expressed as a fuzzy set, and a plan’s
membership function with respect to that set indicates the extent to which the plan satisfies
that goal. An aggregation operator combines membership functions for individual goals into
an aggregate membership function, which is an indicator of global success; this is called the
decision set. A decision maker then selects an alternative that is “strongly” a member of
the decision set. Dubois and Prade categorize and analyze various aggregation functions.
However, they do not address the computational issues associated with plan evaluation or
generation.

Our analysis is similar to the efforts in fuzzy decision making in that it emphasizes the
representation problems associated with expressing partial satisfaction of goals. Fuzzy sets
may be a more appropriate representation than the static attribute utility function when the
latter (a numeric function) cannot reasonably be assessed. Fuzzy-set methodology provides a
way to incorporate vague satisfaction measures like “reasonably well satisfied,” “utter failure,”
and “complete success” into a precise analysis. As such, it is complementary to our analysis.

9. CONCLUSION AND FUTURE WORK

Our purpose in this work was to take the concept of goals as they have been used in sym-
bolic planning systems and simultaneously extend their functionality and recast the intuitions
in a form that can be used effectively by a plan-generation algorithm.

Our framework involved building a utility model by first identifying the agent’s top-level
goals plus the residual attributes that measure resource consumption and production in service
of those goals. The assumption of utility independence among these attributes means that
their interactions can be summarized byn+ 1 numeric parameters, representing the relative
weights for then goals and residual attributes.

We then extended the notion of a goal to one that involves both a temporal component
(deadline or maintenance interval) and a static component (a formula to be achieved or an
attribute value to be maximized). We discussed various forms for the static goal component:
symbolic and numeric attributes, conjunctions of attributes, and ordered conjunctions.

For both deadline and maintenance goals the user supplies two components that describe
preferences over partial-satisfaction scenarios: the static component utility function and the
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temporal weighting coefficient. The former defines what it means to satisfy the goal’s static
component, either partially or fully. The latter indicates how utility declines as a function of
missing the deadline or violating the maintenance interval.

We next showed how the model’s information, both numeric and symbolic, could be
exploited to compare plans: to decide whether one plan’s expected utility was greater than
another, or to generate bounds on the quality of partial plans so that one partial plan can be
chosen over an alternative. The general form of these relationships was to consider a plan
P1 that was likely to achieve at worst a high level of satisfaction, and a planP2 that was
likely to achieve at best a low level of satisfaction. The result was a function of the respective
formulas, their likelihoods, and their times, ensuring thatP1’s expected utility was greater
thanP2’s, regardless of the two plans’ other effects.

Finally, we demonstrated how the utility model is exploited by the two existing plan-
ning algorithms,PYRRHUS, which extends classical least-commitment algorithms, andDRIPS,
which plans by refining abstract actions.

The formal model can be extended to cover more types of goals. The representation in
this paper covers only goals that mention facts, but goals can also refer to events. An example
might be “flip the switch at noon.” Goals mentioning events must be deadline goals, since
it makes no sense to maintain an event over an interval of time. Deadline goals involving
events could be represented similarly to goals with a symbolic static component. But the
current definition must be changed, because we defined the utility model of the goal’s static
component in terms of formulas that hold at time points, whereas events occur over time
intervals.

The most important area for future work is to incorporate our model into additional
decision-theoretic planning algorithms. Candidates are the state-space planners based on
Markov decision processes, probabilistic nonlinear planners, and influence-diagram-based
planners.
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