[MUICT-AST] MUICT x Macquarie University: Exploring World's Research Frontiers in

Intelligent Autonomous Systems

Dr. James Xi Zheng

Title	Testing Learning Enabled Cyber - Physical Systems: Current
	Approaches and Future Directions
Bio	Dr. Xi Zheng earned his Ph.D. in Software Engineering from the
	University of Texas at Austin in 2015. He is awarded Australian
	Research Council Future Fellow in 2024. Between 2005 and 2012,
	he was the Chief Solution Architect for Menulog Australia. Currently,
	he occupies several leadership roles at Macquarie University,
	Australia: Director of the Intelligent Systems Research Group
	(ITSEG.ORG), Director of International Engagement in the School of
	Computing, Associate Professor (effective 1st Jan 2025) and Deputy
	Program Leader in Software Engineering. His research areas include
	Cyber-Physical Systems Testing and Verification, Safety Analysis,

	Distributed Learning, Internet of Things, and the broader spectrum
	of Software Engineering. Dr. Zheng has successfully secured over
	\$2.4 million in competitive funding from the Australian Research
	Council (1 Future Fellow, 2 Linkages and 1 Discovery) and Data61
	(CRP) projects focused on safety analysis, model testing and
	verification, and the development of trustworthy AI for autonomous
	vehicles. He has been recognized with several awards, including the
	Deakin Industry Researcher Award (2016) and the MQ Early Career
	Researcher Award (Runner-up 2020). His academic contributions
	include numerous highly cited papers and best conference paper
	awards. He has served as a Program Committee member for leading
	Software and System conferences, such as FSE (2022, 2024) and
	PerCom (2017-2025), and as PC chair for IEEE CPSCom-2021 and
	IEEE Broadnets-2022. Additionally, he has taken on the role of
	associate editor for ACM Distributed Ledger Technologies and editor
	for the Springer Journal of Reliable Intelligent Environments. In
	2023, Dr. Zheng is a visiting professor at both UCLA and UT Austin
	and co-founder of the international workshop on trustworthy
	autonomous cyber-physical systems.
Abstract	Learning-enabled Cyber-Physical Systems (LE-CPS), including
	autonomous vehicles and unmanned drones, hold great promise
	but also raise significant concerns about safety and reliability.
	Unlike traditional software, these LE-CPS integrate deep neural
	networks with logic-based modules, creating unique challenges for
	software testing. Despite advances in testing techniques, the
	practical needs of industry practitioners for safety and formal
	guarantees have not yet been fully addressed.
	To tackle these complex challenges, I have led a team of world-
	leading experts to establish the Trusted Autonomy Working Group

(TACPS.org). In this presentation, I will first briefly discuss two of our
FSE'22 papers that provide a comprehensive study of current
testing practices and test reduction strategies in autonomous
vehicles. I will then highlight a recent FSE'24 paper that revives
model-based testing in LE-CPS using large language models,
followed by related work in TSE'24 and ICSE'25 on generating
driving scenarios with large language models and creating an online
testing environment to enhance drone autolanding systems. Finally,
I will cover our recent paper on the neuro-symbolic paradigm,
which aims to improve the interpretability, testability, and
verifiability of LE-CPS.